

Infoblox

Infoblox .

Infoblox 🚓

Infoblox

IPv6 It starts TODAY!

Thomas Hedströmmer SE thedstrommer@infoblox.com

© 2011 Infoblox Inc. All Rights Reserved.

Global Address Space Update

- OK, who hasn't heard that IPv4 really is running out?
- Reality is:
 - IANA IPv4 pool exhausted on 3 Feb 2011
 - RIRs rapidly running out
 - APNIC reached it's last /8 on the 15th April
 - RIPE has < 5 /8s left</p>
 - LIRs will run out last
- So expect RIRs and LIRs to start running out in sometime from 2012 onwards and enforcing strict allocation rules
- Growth can only be achieved by deploying IPv6

What's the One Thing Everyone Knows About IPv6?

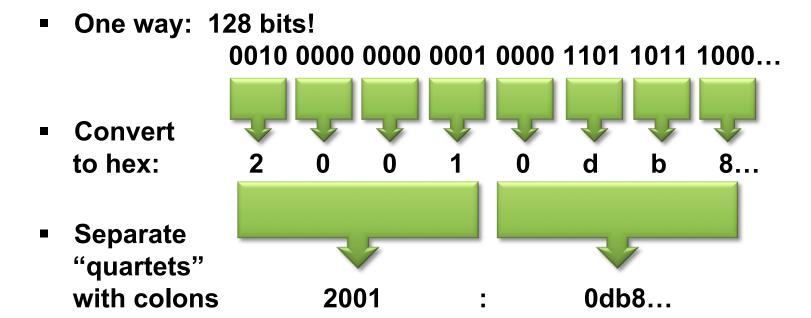
128-bit addresses

But How Big Is That?

2¹²⁸ addresses =

340,282,366,920,938,463,463,374,607,431,768,211,456

340 undecillion addresses


Say this is all of IPv6 address space...

Then all of IPv4 address space is a little bigger

- Eight hex quartets equals 128 bits: 2001:0db8:0000:0000:0001:0002:0003:0004
- Omit leading zeroes in a quartet: 2001:db8:0:0:1:2:3:4
- Replace one series of consecutive all-zeroes quartets with "::": 2001:db8::1:2:3:4

IPv6 Support

GOOD NEWS:

- Most infrastructure devices (e.g., routers) support IPv6 already
- Most modern operating systems (e.g., Windows 7, Mac OS X, Linux) support IPv6 already
- IPv6 is already routed over the backbone of the Internet

BAD NEWS:

- Much CPE doesn't support IPv6
- Very few applications support IPv6
- Very few organizations use IPv6
- There's very little organizational experience with or knowledge of IPv6

IP version	IPv4	IPv6	
Deployed	1981	1999	
Address Size	32-bit number	128-bit number	
Address Format	Dotted Decimal Notation: 192.0.2.76	Hexadecimal Notation: 2001:0DB8:0234:AB00:0123:4567:8901:ABCD Literal (e.g. browser): [2001:DB8:1234::101]	
Number of Addresses	2 ³² = 4,294,967,296	2 ¹²⁸ = 340,282,366,920,938,463, 463,374,607,431,768,211,456	
Examples of Prefix Notation	192.0.2.0/24 10/8	2001:0DB8:0234::/48 2600:0000::/12	
Security	IPSec	IPSec Mandated, works End-to-End	
Mobility	Mobile IP	Mobile IP with Direct Routing	
Quality of Service	Differentiated/Integrated Service	Differentiated/Integrated Service	
IP Multicast	IGMP/PIM/Multicast BGP	MLD/PIM/Multicast, BGP, Scope Identifier	

Prefix	Туре	Type IPv4 Equivalent	
:: (technically ::/ 128)	Unspecified address	0.0.0.0	
::1 (technically :: 1/128)	Loopback address	127.0.0.1	
fc00::/7 (specifically fd00::/8)	Unique Local Addresses	RFC 1918 (e.g., 10/8)	
fe80::/10	Link-local Addresses	169.254/16	
2001:db8::/32	Documentation	192.0.2/24	
2000::/3	Global Unicast		
ff00::/8	Multicast	224/4	

Prefixes and Subnetting

IPv6 is aim at using public address space – no need for NAT

- Guaranteed unique address space
- Simplifies company acquisition and merger
- 2000::/3

Alternatively use "Unique Local Addresses" equivalent of RFC1918

- But use correctly with randomized 40 bits to create uniqueness
 - <u>http://www.sixxs.net/tools/grh/ula/</u>
- FD00::/8
- Typical Prefix Allocation = /48
 - This can be further locally sub-netted typically directly to /64s
 - providing 65535 /64 prefixes!
- /64 leaves 64-bits for EUID-64 based host IPs

Multicast in IPv6

- IPv6 does not use Broadcasts
- Multicast used instead for internal services
 - Set of 'well known' service multicast addresses

Address	Description	
ff02::1	All nodes on the local network segment	
ff02::2	All routers on the local network segment	
ff02::5	OSPFv3 AllSPF routers	
ff02::6	OSPFv3 AllDR routers	
ff02::9	RIP routers	
ff02::a	EIGRP routers	
ff02::d	PIM routers	
ff02::16	MLDv2 reports (defined in RFC 3810)	
ff02::1:2	All DHCP servers and relay agents on the local network site (defined in RFC 3315)	
ff02::1:ffxx:xxxx	Solicited-Node Address (last 24-bits of IPv6 unicast address to be resolved)	
ff05::1:3	All DHCP servers on the local network site (defined in RFC 3315)	
ff0x::fb	Multicast DNS	
ff0x::101	Network Time Protocol	
ff0x::108	Network Information Service	
ff0x::114	Used for experiments	

12

IPv6 Provisioning Mechanism

Stateless Address Auto configuration (SLAAC)

Stateful DHCPv6

Stateless DHCPv6

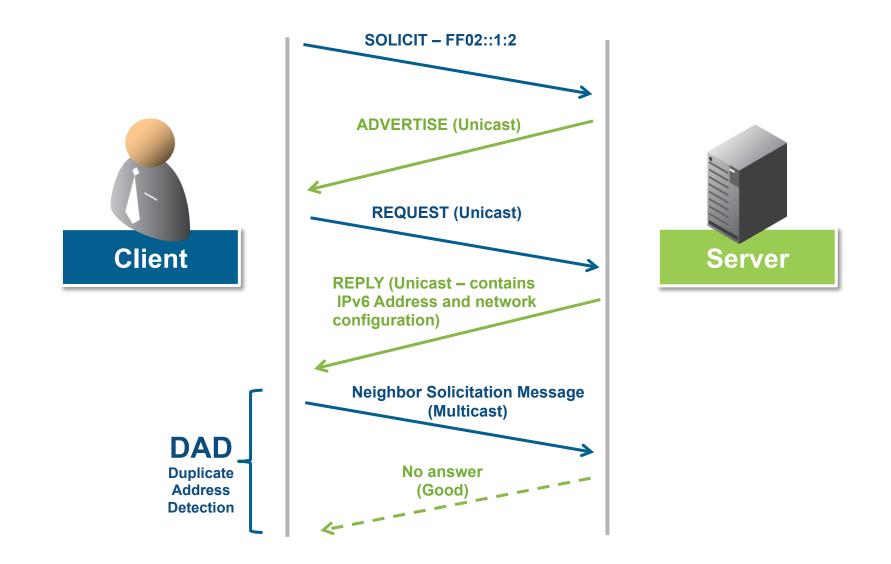
RFC 5006/6106 (RDNSS/DNSSL) And What Sort of a Thing Is That?

Client derives IPv6 address from router-advertised prefix and self-generated suffix

Like DHCP, but for IPv6

Client uses SLAAC for IP address, DHCP for DNS, etc.

Client uses router advertisements for DNS, etc.


	Address Assignment	Option Assignment	
A flag	SLAAC	RFC 5006/6106 (RDNSS/DNSSL)?	
M flag	Stateful DHCPv6	Stateful DHCPv6	
O flag	SLAAC	Stateless DHCPv6	

IPv4 DHCP	IPv6 DHCP
DHCPOFFER	ADVERTISE (2)
DHCPREQUEST	REQUEST (3), RENEW (5), REBIND (6)
DHCPACK/DHCPNAK	REPLY (7)
DHCPRELEASE	RELEASE (8)
DHCPINFORM	INFORMATION-REQUEST (11)
DHCPDECLINE	DECLINE (9)
	CONFIRM (4)
DHCPFORCERENEW	RECONFIGURE (10)
	RELAY-FORW (12), RELAY-REPLY (13)

DHCPv6 (Typical Flow)

% ifconfig lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384 options=3<RXCSUM,TXCSUM> inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1 inet 127.0.0.1 netmask 0xff000000 inet6 ::1 prefixlen 128 en0: flags=8863<UP, BROADCAST, SMART, RUNNING, SIMPLEX, MULTICAST> mtu 1500 options=27<RXCSUM, TXCSUM, VLAN MTU, TSO4> ether 00:23:df:a9:98:14 inet6 fe80::223:dfff:fea9:9814%en0 prefixlen 64 scopeid 0x4 inet6 2001:db8:1f05:1a2f:223:dfff:fea9:9814) prefixlen 64 autoconf inet6 2001:db8:1f05:1a2f:e1d1:33a6:981f:de48 prefixlen 64 autoconf temporary inet6 2001:db8:1f05:1a2f::64 prefixlen 64 inet 192.168.0.244 netmask 0xffffff00 broadcast 192.168.0.255 media: autoselect (100baseTX <full-duplex,flowcontrol>) status: active en1: flags=8863<UP, BROADCAST, SMART, RUNNING, SIMPLEX, MULTICAST> mtu 1500 ether 00:23:6c: 97:bc:bf (inet6 fe80::223:6cff:fe97:bcbf%en1) prefixlen 64 scopeid 0x5 inet6 2001:db8:1f05:1a2f:223:6cff:fe97:bcbf prefixlen 64 autoconf inet6 2001:db8:1f05:1a2f:dc3a:80d7:5ea:f0c5 prefixlen 64 autoconf temporary inet6 2001:db8:1f05:1a2f::6b prefixlen 64 inet 192.168.0.236 netmask 0xffffff00 broadcast 192.168.0.255 media: autoselect status: active

 Forward mapping (mapping domain names to IPv6 addresses) uses the AAAA record

charlie	IN	AAAA	2001:db8:cafe:1::2
jessie	IN	AAAA	2001:db8:cafe:1::3

- Can use the abbreviated form of the IPv6 address
- AAAA records can be added to any zone data file
- A domain name can point to both A and AAAA records (for hosts with dual stacks)

- Reverse mapping (mapping IPv6 addresses to domain names) uses the PTR record
 - Just like IPv4 reverse mapping
- Unfortunately, the entire (i.e., unabbreviated) IPv6 address is embedded in the domain name

These records obviously go in different reverse-mapping zones

This is transition time....

- The preferred transition technology is IPv6 to IPv4 (not IPv4 to IPv6) therefore enterprise needs to take IPv6 strategy seriously
 - Dual Stack
 - External Services
 - IPv6 Only Networks

NAT46 is bad

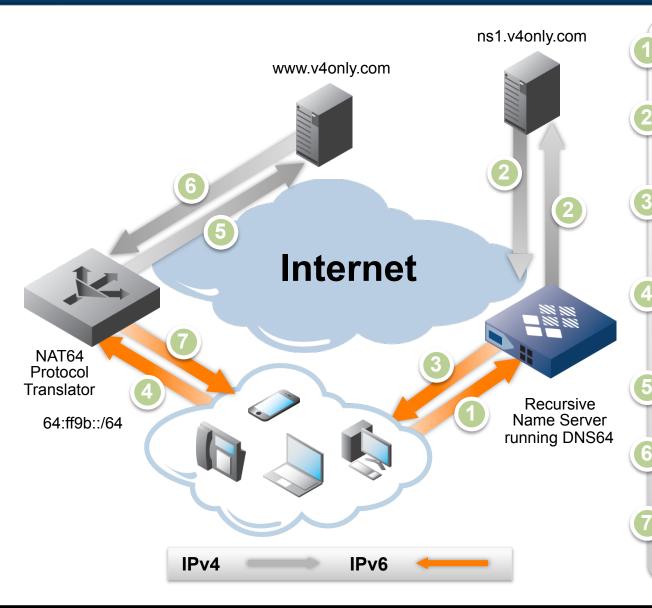
- Standards tried and deprecated
- Performance Issues

NAT64 (with DNS64)

- Standardized
- Works
- Available

DNS64/NAT64 Use Cases

- Lack of IPv4 address space limits rollout of new services
 - WiFi / WiMAX
 - Smart Phones
 - Consumer Broadband
- Need to connect customers who are IPv6 only to "legacy" IPv4 sites that have yet to adopt IPv6



Enterprise IT

- Not an immediate need for most enterprise IT
- Can be used to provide IPv6 at the edge (web properties)
- Will be more important when IPv6 rollout is near completion
 - Customer will eventually wish to disable IPv4 on most infrastructure
 - Some legacy systems will not "speak" IPv6
 - Customer can use DNS64/ NAT64 to create islands of legacy IPv4 services

DNS64 – Infoblox Feature

Client queries <u>www.v4only.com</u> AAAA to local recursive name server

- Recursive name server queries name server for v4only.com and gets no AAAA response
- Recursive name server synthesizes a IPv6 address to return to client – using /96 prefix
- Client sends packet to synthesized IPv6 address which routes to the NAT64 protocol translator
- NAT64 device translates packet to destination IPv4 address
- IPv4 only web server returns the response over IPv4 to NAT64 device
- NAT64 device converts the packet to IPv6 to return to the originating client

The Infoblox DNS64 solution requires a NAT64 device

Tested and certified by Infoblox QA with LTM product

- Working on joint press
- LTM product version 11.0

http://www.f5.com/solutions/resources/solution-profiles/managingipv6.html

- Tested and certified by Infoblox
- AX Series version 2.6.4

http://www.a10networks.com/products/axseries-NAT64_DNS64.php

- May work with JunOS 10.4
- Not currently certified working on integration testing
- cisco.
- Some devices support NAT64
 - No certification at this time

Stateless Deployments

- Infoblox DHCP server provides IPv6 DHCP options
- Other client settings are received from router or auto-configured

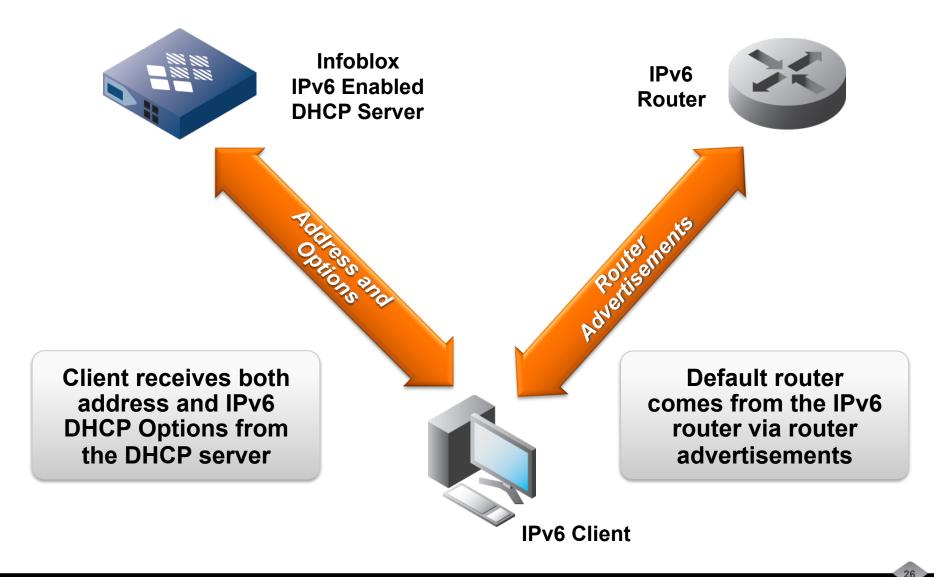
Stateful Deployments

- Infoblox DHCP server provides IPv6 address and IPv6 DHCP options
- Much like IPv4 works today

- Which one will customers deploy? Stateless or Stateful?
- Delegation of IPv6 prefixes
 - In addition to leasing a single address an IPv6 DHCP client can now lease a whole network
 - IPv6 prefixes are delegated to other devices
 - Prefix address space may differ from client address location

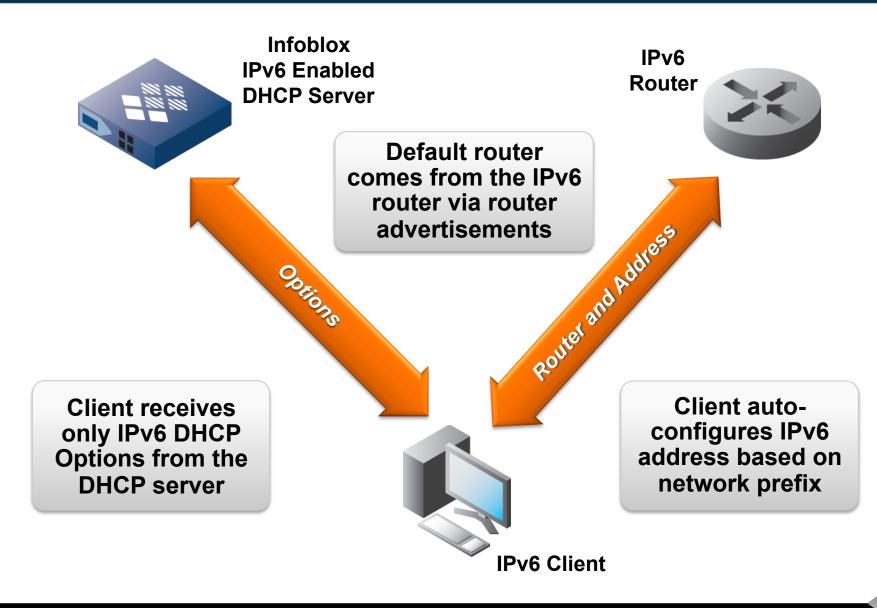
Stateless Deployments

- Client receives all required information from the router to configure default gateway and address
- Generally no DHCP options However, additional options provided by DHCP if available


Stateful Deployments

- Client receives address from the DHCP server
- Client receives options from the DHCP server

- "M" and "O" bits in RA (router advertisement)
 - "M" == "Managed address configuration" flag tells the client that DHCPv6 is available for address configuration
 - "O" == "Other configuration" flag tells the client that DHCPv6 is available for other (non-address) information
 - For example: DNS server options


DHCPv6 – Stateful with Infoblox

DHCPv6 – Stateless with Infoblox

Resources

- http://www.getipv6.info/
- http://www.tunnelbroker.net/
- http://ipv6.he.net/certification/
- http://www.6deploy.eu/

Questions?

